209. Minimum Size Subarray Sum (1)

Link

Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.

Example:

Input: s = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: the subarray [4,3] has the minimal length under the problem constraint.

Follow up:If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).

Solution

O(n) solution Two pointers

 public int minSubArrayLen(int s, int[] nums) {
        int len = nums.length;
        int minLen = Integer.MAX_VALUE;
        int sum = 0, end = 0, start = 0;
        while(end < nums.length){
            sum += nums[end];
            while(sum >= s && start < nums.length){
                minLen = Math.min(end-start+1, minLen);
                sum -= nums[start];
                start++;
            }
            end++;
        }
        return minLen == Integer.MAX_VALUE ? 0 : minLen;
    }

Follow up:

O(nlogn): Since all elements are positive, the cumulative sum must be strictly increasing. Then, a subarray sum can expressed as the difference between two cumulative sum. Hence, given a start index for the cumulative sum array, the other end index can be searched using binary search.

private int solveNLogN(int s, int[] nums) {
    int[] sums = new int[nums.length + 1];
    for (int i = 1; i < sums.length; i++) sums[i] = sums[i - 1] + nums[i - 1];
    int minLen = Integer.MAX_VALUE;
    for (int i = 0; i < sums.length; i++) {
        int end = binarySearch(i + 1, sums.length - 1, sums[i] + s, sums);
        if (end == sums.length) break;
        if (end - i < minLen) minLen = end - i;
    }
    return minLen == Integer.MAX_VALUE ? 0 : minLen;
}

private int binarySearch(int lo, int hi, int key, int[] sums) {
    while (lo <= hi) {
       int mid = (lo + hi) / 2;
       if (sums[mid] >= key){
           hi = mid - 1;
       } else {
           lo = mid + 1;
       }
    }
    return lo;
}

Last updated

Was this helpful?