62. Unique Paths I
A robot is located at the top-left corner of a m x n
grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Solution
Recursion way:
T: O(2^(n*m))
public int uniquePaths(int m, int n) {
if(m == 1 || n == 1) return 1;
return uniquePaths(m-1, n) + uniquePaths(m, n-1);
}
Dp:
class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[m][n];
for(int i = 0; i < m; i++){
dp[i][0] = 1;
}
for(int j = 0; j < n; j++){
dp[0][j] = 1;
}
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
return dp[m-1][n-1];
}
}
T: O(N*M) space: O(N*M)
Last updated
Was this helpful?