70. Climbing Stairs
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
Note: Given n will be a positive integer.
Example 1:
Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps
Example 2:
Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step
Solution
Recursion
public int climbStairs(int n) {
if(n == 0) return 0;
if(n == 1) return 1;
if(n == 2) return 2;
return climbStairs(n-1) + climbStairs(n-2);
}
solve with memorization
public int climbStairs(int n) {
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i < n+1; i++){
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n];
}
flip that around (Top down)反過來想 (dynamic approach)
由base case開始到往下, 到下個位置的方法數,一直累加直到n。
public int climbStairs(int n) {
if ( n == 0) return 1;
if ( n == 1 ) return 1;
if ( n == 2 ) return 2;
int all_ways = 0;
int way_from_two_Step_Before = 1;
int way_from_one_Step_Before = 2;
for( int i = 3; i <= n ; i++){
all_ways = way_from_one_Step_Before + way_from_two_Step_Before ;
//update the ways of oneStep/twoStep for next distance
way_from_two_Step_Before = way_from_one_Step_Before ;
way_from_one_Step_Before = all_ways;
}
return all_ways;
}
Last updated
Was this helpful?