139. Word Break
Given a string s
and a dictionary of strings wordDict
, return true
if s
can be segmented into a space-separated sequence of one or more dictionary words.
Note that the same word in the dictionary may be reused multiple times in the segmentation.
Example 1:
Input: s = "leetcode", wordDict = ["leet","code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".
Example 2:
Input: s = "applepenapple", wordDict = ["apple","pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
Note that you are allowed to reuse a dictionary word.
Example 3:
Input: s = "catsandog", wordDict = ["cats","dog","sand","and","cat"]
Output: false
Constraints:
1 <= s.length <= 300
1 <= wordDict.length <= 1000
1 <= wordDict[i].length <= 20
s
andwordDict[i]
consist of only lowercase English letters.All the strings of
wordDict
are unique.
Solution
public boolean wordBreak(String s, List<String> wordDict) {
Map<Integer, Boolean> dp = new HashMap<>();
Set<String> set = new HashSet<>();
for(String word : wordDict){
set.add(word);
}
return helper(s, 0, set, dp);
}
public boolean helper(String s, int start, Set<String> set, Map<Integer, Boolean> dp){
if(start == s.length()) return true;
if(dp.containsKey(start)) return dp.get(start);
for(int i = start; i < s.length(); i++){
if(set.contains(s.substring(start, i+1)) &&
helper(s, i+1, set, dp)){
dp.put(start, true);
return true;
}
}
dp.put(start, false);
return false;
}
Time Complexity : O(N^2) : Calculate (N + N-1 + N-2 + ....+1
since we only toggle all the combinaton of [0...N] // which will be N+ N-1 + N-2 + ...1 // oneChar twoChar threeChar)
Last updated
Was this helpful?