334. Increasing Triplet Subsequence (1)
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the array.
Formally the function should:
Return true if there exists i, j, k such that arr[i] < arr[j] < arr[k] given 0 ≤ i < j < k ≤ n-1 else return false.
Note: Your algorithm should run in O(n) time complexity and O(1) space complexity.
Example 1:
Input: [1,2,3,4,5]
Output: true
Example 2:
Input: [5,4,3,2,1]
Output: false
Solution
當minValue1再次更新時(找到比當下更小的value),minValue2似乎沒有update到。但這樣不影響邏輯,因為更新前minValue一定比minValue2小,所以能夠找到第三個數字小於minValue2那必定小於之前的minValue1,滿足找到三個增加的數字。
public boolean increasingTriplet(int[] nums) {
int minValue1 = Integer.MAX_VALUE;
int minValue2 = Integer.MAX_VALUE;
for(int i = 0; i < nums.length; i++){
if(nums[i] <= minValue1){
//當minValue1再次更新時(找到比當下更小的value),
//minValue2似乎沒有update到。但這樣不影響邏輯,
//因為更新前minValue一定比minValue2小,所以能夠找到第三個數字
//小於minValue2那必定小於之前的minValue1,滿足找到三個增加的數字。
minValue1 = nums[i];
}
else if (nums[i] <= minValue2){
minValue2 = nums[i];
}
else{
return true;
}
}
return false;
}
}
Last updated
Was this helpful?